首页> 外文OA文献 >Engineering animal models of dystonia
【2h】

Engineering animal models of dystonia

机译:肌张力障碍的动物模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dystonia is a neurological disorder characterized by abnormal involuntary movements that are prolonged and often cause twisting and turning. Several genetically modified worms, fruit flies, and rodents have been generated as models of genetic dystonias, in particular DYT1, DYT11, and DYT12 dystonias. Although these models do not show overt dystonic symptoms, the rodent models exhibit motor deficits in specialized behavioral tasks, such as the rotarod and beam-walking tests. For example, in a rodent model of DYT12 dystonia, which is generally stress triggered, motor deficits are observed only after the animal is stressed. Moreover, in a rodent model of DYT1 dystonia, the motor and electrophysiological deficits can be rescued by trihexyphenidyl, a common anticholinergic medication used to treat dystonic symptoms in human patients. Biochemically, the DYT1 and DYT11 animal models also share some similarities to patients, such as a reduction in striatal D2 dopamine receptor and binding activities. In addition, conditional knockout mouse models for DYT1 and DYT11 dystonia demonstrate that loss of the causal dystonia-related proteins in the striatum leads to motor deficits. Interestingly, loss of the DYT1 dystonia causal protein in Purkinje cells shows an improvement in motor performance, suggesting that gene therapy targeting of the cerebellum or intervention in its downstream pathways may be useful. Finally, recent studies using DYT1 dystonia worm and mouse models led to a potential novel therapeutic agent, which is currently undergoing clinical trials. These results indicate that genetic animal models are powerful tools to elucidate the pathophysiology and to further develop new therapeutics for dystonia.
机译:肌张力障碍是一种神经系统疾病,其特征是异常的非自愿运动持续时间较长,并经常引起扭曲和转弯。已经产生了几种转基因蠕虫,果蝇和啮齿动物作为遗传性肌张力障碍的模型,特别是DYT1,DYT11和DYT12肌张力障碍。尽管这些模型没有显示出明显的肌张力障碍症状,但啮齿动物模型在特殊的行为任务(例如,旋转脚架和电子束行走测试)中表现出运动缺陷。例如,在通常由压力触发的DYT12肌张力障碍的啮齿动物模型中,仅在给动物施加压力后才观察到运动缺陷。此外,在DYT1肌张力障碍的啮齿动物模型中,运动和电生理缺陷可通过三己苯吡啶(一种用于治疗人类患者肌张力障碍症状的常用抗胆碱能药物)来挽救。从生化角度看,DYT1和DYT11动物模型也与患者具有某些相似之处,例如纹状体D2多巴胺受体的减少和结合活性。此外,DYT1和DYT11肌张力障碍的条件基因敲除小鼠模型表明纹状体中因因肌张力障碍相关蛋白的缺失会导致运动障碍。有趣的是,Purkinje细胞中DYT1肌张力障碍致病蛋白的丢失显示出运动能力的改善,这表明靶向小脑的基因治疗或干预其下游途径可能是有用的。最后,最近使用DYT1肌张力障碍蠕虫和小鼠模型的研究导致了潜在的新型治疗剂,目前正在临床试验中。这些结果表明,遗传动物模型是阐明病理生理学和进一步开发肌张力障碍新疗法的有力工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号